ℓ_{1}-Regularized Linear Regression: Persistence and Oracle Inequalities

Peter Bartett
EECS and Statistics
UC Berkeley

slides at http://www.stat.berkeley.edu/~bartlett

J oint work with Shahar Mendelson and J oe Neeman.

ℓ_{1}-regularized linear regression

- Random pair: $(X, Y) \sim P$, in $\mathbb{R}^{d} \times \mathbb{R}$.
- n independent samples drawn from P : $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- Find β so linear function $\langle X, \beta\rangle$ has small risk,

$$
P \ell_{\beta}=P(\langle X, \beta\rangle-Y)^{2} .
$$

Here, $\ell_{\beta}(X, Y)=(\langle X, \beta\rangle-Y)^{2}$ is the quadratic loss of the linear prediction.

ℓ_{1}-regularized linear regression

- Random pair: $(X, Y) \sim P$, in $\mathbb{R}^{d} \times \mathbb{R}$.
- n independent samples drawn from P :

$$
\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) .
$$

- Find β so linear function $\langle X, \beta\rangle$ has small risk,

$$
P \ell_{\beta}=P(\langle X, \beta\rangle-Y)^{2} .
$$

Example. ℓ_{1}-regularized least squares:

$$
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{d}} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d}},
$$

where $P_{n} \ell_{\beta}=\frac{1}{n}_{i=1}^{X^{n}}\left(\left\langle X_{i}, \beta\right\rangle-Y_{i}\right)^{2}$, and $\|\beta\|_{\ell_{1}^{d}}={ }_{j=1}^{X^{d}}\left|\beta_{j}\right|$.

ℓ_{1}-regularized linear regression

Example. ℓ_{1}-regularized least squares:

$$
\begin{gathered}
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{d}} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d}}, \\
\text { where } P_{n} \ell_{\beta}=\frac{1}{n}_{i=1}^{\mathrm{X}^{n}}\left(\left\langle X_{i}, \beta\right\rangle-Y_{i}\right)^{2} \text {, and }\|\beta\|_{\ell_{1}^{d}}=X_{j=1}^{X^{d}}\left|\beta_{j}\right| .
\end{gathered}
$$

- Tends to select sparse solutions (few non-zero components β_{j}).
- Useful, for example, if $d \gg n$.

ℓ_{1}-regularized linear regression

Example. ℓ_{1}-regularized least squares:

$$
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{d}} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d}},
$$

Example. ℓ_{1}-constrained least squares:

$$
\hat{\beta}=\arg \min _{\|\beta\|_{l_{1} \leq 1} \leq b_{n}} P_{n} l_{\beta} .
$$

[Recall: $\ell_{\beta}(X, Y)=(\langle X, \beta\rangle-Y)^{2}$.]

ℓ_{1}-regularized linear regression

Example. ℓ_{1}-regularized least squares:

$$
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{d}} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d}}
$$

Example. ℓ_{1}-constrained least squares:

$$
\hat{\beta}=\arg \min _{\|\beta\|_{\ell_{1}^{d}} \leq b_{n}} P_{n} \ell_{\beta}
$$

Some questions:

- Prediction: Does $\hat{\beta}$ give accurate forecasts? e.g., How does $P \ell_{\hat{\beta}}$ compare with $P \ell_{\beta^{*}}$?

Here, $\beta^{*}=\arg \min \quad P \ell_{\beta}:\|\beta\|_{\ell_{1}^{d}} \leq b_{n}$.

ℓ_{1}-regularized linear regression

Example. ℓ_{1}-regularized least squares:

$$
\hat{\beta}=\arg \min _{\beta \in \mathbb{R}^{d}} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d}},
$$

Example. ℓ_{1}-constrained least squares:

$$
\hat{\beta}=\arg \min _{\|\beta\|_{l_{1}} \leq b_{n}} P_{n} \ell_{\beta} .
$$

Some questions:

- Does $\hat{\beta}$ give accurate forecasts? e.g., $P \ell_{\hat{\beta}}$ versus $P \ell_{\beta^{*}}=\min P \ell_{\beta}:\|\beta\|_{\ell_{1}^{d}} \leq b_{n}$?
- Estimation: Under assumptions on P, is $\hat{\beta} \approx$ correct?
- Sparsity Pattem Estimation: Under assumptions on P, are the non-zeros of $\hat{\beta}$ correct?

Outine of Talk

1. For ℓ_{1}-constrained least squares, bounds on $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}}$.

- Persistence: (Greenshtein and Ritov, 2004)

For what $d_{n}, b_{n} \rightarrow \infty$ does $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \rightarrow 0$?

- Convex Aggregation:

For $b=1$ (convex combinations of dictionary functions), what is rate of $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}}$?
2. For ℓ_{1}-regularized least squares, oracle inequalities.
3. Proof ideas.

ℓ_{1}-regularized linear regression

Key Issue: ℓ_{β} is unbounded, so some key tools (e.g., concentration inequalities) cannot immediately be applied.

- For (X, Y) bounded, ℓ_{β} can be bounded using $\|\beta\|_{\ell_{1}^{d}}$, but this gives loose prediction bounds.
- We use chaining to show that metric structures of ℓ_{1}-constrained linear functions under P_{n} and P are similar.

Main Results: Excess Risk

For ℓ_{1}-constrained least squares,

$$
\hat{\beta}=\arg \min _{\|\beta\|_{\ell_{1}^{d}} \leq b} P_{n} \ell_{\beta}
$$

if X and Y have suitable tail behaviour then, with probability $1-\delta$,

$$
P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \leq \frac{c \log ^{\alpha}(n d)}{\delta^{2}} \min \frac{b^{2}}{n}+\frac{d}{n}, \frac{b}{\sqrt{n}} 1+\frac{b}{\sqrt{n}}
$$

- Small d regime: d / n.
- Large d regime: b / \sqrt{n}.

Main Results: Excess Risk

For ℓ_{1}-constrained least squares, with probability $1-\delta$,

$$
P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \leq \frac{c \log ^{\alpha}(n d)}{\delta^{2}} \min \frac{b^{2}}{n}+\frac{d}{n}, \frac{b}{\sqrt{n}} 1+\frac{b}{\sqrt{n}}
$$

Conditions:

1. $P Y^{2}$ is bounded by a constant.
2. $\quad\|X\|_{\infty}$ bounded a.s.,

- X log concave and $\max _{j}\left\|\left\langle X, e_{j}\right\rangle\right\|_{L_{2}} \leq c$, or
- $X \log$ concave and isotropic.

Application: Persistence

Consider ℓ_{1}-constrained least squares,

$$
\hat{\beta}=\arg \min _{\|\beta\|_{\ell_{1}^{d}} \leq b} P_{n} \ell_{\beta}
$$

Suppose that $P Y^{2}$ is bounded by a constant and tails of X decay nicely (e.g., $\|X\|_{\infty}$ bounded a.s. or X log concave and isotropic).
Then for increasing d_{n} and

$$
b_{n}=0 \frac{\sqrt{n}}{\log ^{3 / 2} n \log ^{3 / 2}\left(n d_{n}\right)}
$$

ℓ_{1}-constrained least squares is persistent
(i.e., $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \rightarrow 0$).

Application: Persistence

If $P Y^{2}$ is bounded and tails of X decay nicely, then
ℓ_{1}-constrained least squares is persistent provided that d_{n} is increasing and

$$
b_{n}=0 \frac{\sqrt{n}}{\log ^{3 / 2} n \log ^{3 / 2}\left(n d_{n}\right)} .
$$

Previous Results (Greenshtein and Ritov, 2004):

1. $b_{n}=\omega\left(n^{1 / 2} / \log ^{1 / 2} n\right)$ implies empirical minimization is not persistent for Gaussian (X, Y).
2. $b_{n}=o\left(n^{1 / 2} / \log ^{1 / 2} n\right)$ implies empirical minimization is persistent for Gaussian (X, Y).
3. $b_{n}=o\left(n^{1 / 4} / \log ^{1 / 4} n\right)$ implies empirical minimization is persistent under tail conditions on (X, Y).

Application: Convex Aggregation

Consider $b=1$, so that the ℓ_{1}-ball of radius b is the convex hull of a dictionary of d functions (the components of X).
Tsybakov (2003) showed that, for any aggregation scheme $\hat{\beta}$, the rate of convex aggregation satisfies

$$
P \ell_{\hat{\beta}}-P \ell_{\beta^{*}}=\Omega \quad \min \quad \frac{d}{n}, \frac{r}{\log d}_{n}^{!!} .
$$

For bounded, isotropic distributions, our result implies that this rate can be achieved, up to log factors, by least squares over the convex hull of the dictionary.
Previous positive results (Tsybakov, 2003; Bunea, Tsybakov and Wegkamp, 2006) involved complicated estimators.

Outine of Talk

1. For ℓ_{1}-constrained least squares, bounds on $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}}$.

- Persistence:

For what $d_{n}, b_{n} \rightarrow \infty$ does $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \rightarrow 0$?

- Convex Aggregation:

For $b=1$ (convex combinations of dictionary functions), what is rate of $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}}$?
2. For ℓ_{1}-regularized least squares, oracle inequalities.
3. Proof ideas.

Proof Ideas: 1. ϵ-equivalence of P and P_{n} structures

Define

$$
G_{\lambda}=\frac{\lambda}{P\left(\ell_{\beta}-\ell_{\beta^{*}}\right)}\left(\ell_{\beta}-\ell_{\beta^{*}}\right): P\left(\ell_{\beta}-\ell_{\beta^{*}}\right) \geq \lambda
$$

Then:
$\mathbf{E} \sup _{g \in G_{\lambda}}\left|P_{n} g-P g\right|$ is small
\Rightarrow with high probability, for all β with $P\left(\ell_{\beta}-\ell_{\beta^{*}}\right) \geq \lambda$,

$$
(1-\epsilon) P\left(\ell_{\beta}-\ell_{\beta^{*}}\right) \leq P_{n}\left(\ell_{\beta}-\ell_{\beta^{*}}\right) \leq(1+\epsilon) P\left(\ell_{\beta}-\ell_{\beta^{*}}\right)
$$

$\Rightarrow P\left(\ell_{\hat{\beta}}-\ell_{\beta^{*}}\right) \leq \lambda$, where $\hat{\beta}=\arg \min _{\beta} P_{n} \ell_{\beta}$.

Proof Ideas: 2. Symmetrization, subgaussian tails

Proof Ideas: 3. Chaining

For a subgaussian process $\left\{Z_{t}\right\}$ indexed by a metric space (T, d), and for $t_{0} \in T$,

$$
E \sup _{t \in T}\left|Z_{t}-Z_{t_{0}}\right| \leq c \mathcal{D}(T, d)=c_{0}^{\mathrm{Z}_{\operatorname{diam}(T, d)} \mathrm{p}} \overline{\log N(\epsilon, T, d)} d \epsilon
$$

where $N(\epsilon, T, d)$ is the ϵ covering number of T.

Proof Ideas: 4. Bounding the Entropy Integral

It suffices to calculate the entropy integral $\mathcal{D}\left(\sqrt{\lambda} D \cap 2 b B_{1}^{d}, d\right)$. We can approximate this by

$$
\mathcal{D}\left(\sqrt{\lambda} D \cap 2 b B_{1}^{d}, d\right) \leq \min \mathcal{D}(\sqrt{\lambda} D, d), \mathcal{D}\left(2 b B_{1}^{d}, d\right)
$$

This leads to:

$$
P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \leq \frac{c \log ^{\alpha}(n d)}{\delta^{2}} \min \frac{b^{2}}{n}+\frac{d}{n}, \frac{b}{\sqrt{n}} 1+\frac{b}{\sqrt{n}}
$$

Proof Ideas: 5. Oracle Inequalities

We get an isomorphic condition on $\left\{\ell_{\beta}-\ell_{\beta^{*}}\right\}$,

$$
\frac{1}{2} P_{n}\left(\ell_{\beta}-\ell_{\beta^{*}}\right)-\epsilon_{n} \leq P\left(\ell_{\beta}-\ell_{\beta^{*}}\right) \leq 2 P_{n}\left(\ell_{\beta}-\ell_{\beta^{*}}\right)+\epsilon_{n},
$$

and this implies that $\hat{\beta}=\arg \min _{\beta}\left(P_{n} \ell_{\beta}+c \epsilon_{n}\right)$ has

$$
P \ell_{\beta} \leq \inf _{\beta} P \ell_{\beta}+c^{\prime} \epsilon_{n} .
$$

This leads to oracle inequality: For ℓ_{1}-regularized least squares,

$$
\hat{\beta}=\arg \min _{\beta} P_{n} \ell_{\beta}+\rho_{n}\|\beta\|_{\ell_{1}^{d_{n}}},
$$

with probability at least $1-o(1)$,

$$
P \ell_{\hat{\beta}} \leq \inf _{\beta} P \ell_{\beta}+c \rho_{n} 1+\|\beta\|_{\ell_{1}^{d_{n}}}
$$

Outline of Talk

1. For ℓ_{1}-constrained least squares,

$$
P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \leq \frac{c \log ^{\alpha}(n d)}{\delta^{2}} \min \frac{b^{2}}{n}+\frac{d}{n}, \frac{b}{\sqrt{n}} 1+\frac{b}{\sqrt{n}}
$$

- Persistence:

If $b_{n}=\tilde{o}(\sqrt{n})$, then $P \ell_{\hat{\beta}}-P \ell_{\beta^{*}} \rightarrow 0$.

- Convex Aggregation:

Empirical risk minimization gives optimal rate (up to log factors): $\tilde{O} \min (d / n, \overline{\log d / n})$.
2. For ℓ_{1}-regularized least squares, oracle inequalities.
3. Proof ideas: subgaussian Rademacher process.

